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a b s t r a c t

Successful development of wind farms relies on the optimal siting of wind turbines to maximize the
power capacity under stochastic wind conditions and wake losses caused by neighboring turbines. This
paper presents a novel method to quickly generate approximate optimal layouts to support infrastruc-
ture design decisions. We model the quadratic integer formulation of the discretized layout design
problem with an undirected graph that succinctly captures the spatial dependencies of the design pa-
rameters caused by wake interactions. On the undirected graph, we apply probabilistic inference using
sequential tree-reweighted message passing to approximate turbine siting. We assess the effectiveness of
our method by benchmarking against a state-of-the-art branch and cut algorithm under varying wind
regime complexities and wind farm discretization resolutions. For low resolutions, probabilistic infer-
ence can produce optimal or nearly optimal turbine layouts that are within 3% of the power capacity of
the optimal layouts achieved by state-of-the-art formulations, at a fraction of the computational cost. As
the discretization resolution (and thus the problem size) increases, probabilistic inference produces
optimal layouts with up to 9% more power capacity than the best state-of-the-art solutions at a much
lower computational cost.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In the effort to limit greenhouse gas emissions, curtail the threat
of climate change, and achieve energy security, governments are
investing heavily in wind farms to harness wind energy. An
important steppingstone in facilitating this process is to build fast
computational tools that help design efficient large-scale wind
farms that maximize power generation and minimize infrastruc-
ture costs, while adhering to local land-use, environmental, and
mechanical constraints. The wind farm layout optimization (WFLO)
is the problem that consists of determining the optimal location of
wind turbines within a fixed geographical area to maximize the
total power capacity of the wind farm under stochastic wind con-
ditions and wake effects between the turbines. Wake effects
created by turbines reduce the wind speed directly downstream of
partment of Mechanical and
a.
(E.G.A. Antonini).
the placed turbines, which decrease the expected power capacity of
any turbines placed in their wakes. Additionally, wakes can overlap
with each other to further decrease the effective wind speeds.

Existing work on WFLO focuses primarily on two key areas:
constructing accurate, computationally efficient wake models and
improving layout optimization algorithms. Different approaches
exist to model wind turbine wakes, namely analytical and numer-
ical models [1]. Analytical wakemodels, such as the ones developed
by Jensen [2], Larsen [3] and Frandsen et al. [4], quickly calculate the
wake losses through momentum mixing rate simplifications while
neglecting complex flow phenomena occurring inwind farms [5,6].
On the other hand, computationally expensive models capturing
detailed wake interactions can be generated using Reynolds-
averaged Navier-Stokes models, large eddy simulations, and
vortex-wake models [7e13]. With regards to the layout optimiza-
tion, the two most important factors of any wind farm design
objective function are minimizing wake effects and maximizing
power capacity [14,15]. A more comprehensive objective function
can be based on the wind farm’s net-present-value profitability by
incorporating installation (i.e., civil and electrical), maintenance,
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and operations costs in addition to wake effects and power ca-
pacity, as illustrated in Refs. [16,17]. Furthermore, design con-
straints such as land-use availability, noise generation, turbine
proximity, and other infrastructure constraints generally accom-
pany objective functions [14,18e20]. As wind farms increase in size
with more turbines [21], the computational tractability of the
layout optimization problem has also become a matter of study
with the development of new algorithms aimed at reducing the
problem’s computational cost [22,23].

Early research on layout optimization algorithms used evolu-
tionary algorithms (EA) to maximize power capacity and minimize
infrastructure costs in small wind farms. Mosetti et al. [24]
formulated the WFLO problem as a discrete-variable problem,
modelling the wake interactions using the Jensen’s wake model
and using a genetic algorithm (GA) to find optimal layouts. With the
same problem formulation and by fine-tuning GA parameters,
Grady et al. [25] obtained better layouts with higher power capacity
and lower installation costs. Huang et al. [26] further enhanced
earlier approaches by applying a distributed genetic algorithm to
decompose a large wind farm terrain search space into local search
spaces to maximize power capacity. Other applications of EAs can
be found in Refs. [19,27,28]. Overall, EAs were shown to be effective
in finding solutions in this non-linear, non-convex, and non-
differentiable optimization problem. Other optimization meta-
heuristics, such as particle swarm optimization (PSO), ant colony
optimization (ACO), among others, have also been applied to this
problem. For instance, Chowdhury et al. [29,30] applied PSO to
varying WFLO objective functions to handle discrete and contin-
uous variables with non-convex objective functions. Similarly, Wan
et al. [31] applied a Gaussian PSO while also incorporating a local
search strategy based on differential evolution to enhance the
optimization results. Hou et al. [32e34] used a PSO tominimize the
levelized production costs of a wind farm both in restricted areas
and by considering cabling cost.

By discretizing the wind farm terrain into grid cells and repre-
senting each cell as a mathematical decision variable, mathematical
programmingmodels can be developed for theWFLO problem [35].
The relationship between the decision variables can be encoded as
an interaction matrix within the objective function, and hard
constraints can be developed for budget, spacing, terrain usage,
noise, and other infrastructure or environmental constraints.
Integer problems can be solved exactly using well-designed algo-
rithms [36] that are generally implemented in off-the-shelf com-
mercial solvers, such as CPLEX (IBM Corp., Armonk, NY). However,
in many cases, models need to be simplified to make the problem
linear, tractable and convex [37]. For instance, Donovan [38,39] and
Archer et al. [40] used a mixed integer programming (MIP) model
to minimize the wake interactions between turbines by varying
branching strategies within the branch and bound algorithm to
reduce optimization time. Turner et al. [41] formulated a binary
quadratic integer program (QIP) showing that their solutions out-
performs EA for complex wind regimes; nevertheless, it can take up
to several hours to converge even for the small problem instances
used in the literature. These timelines are incompatible with best
wind farm design practices, which call for more interactive means
of layout design in the context of multidisciplinary design optimi-
zation. Hence, these studies underscore the need for algorithms
and implementations that can quickly produce good, nearly
optimal solutions of the WFLO problem with lower computational
runtimes.

More recent advancements coupled computational fluid dy-
namics (CFD) wake models directly with optimization algorithms
to solve the WFLO problem. Kuo et al. [42] proposed an algorithm
that couples CFD with MIP to optimize layouts on complex terrains.
King et al. [43,44] and Antonini et al. [45e47] instead developed
2

gradient-based optimization approaches which used adjoint
methods for the gradient calculation. The use of gradient-based
methods was driven by the fact that these methods can outper-
form genetic algorithms in terms of solution quality and compu-
tational cost, as demonstrated by Guirguis et al. in Refs. [48,49]
using analytical wake models. Although these implementations
have the potential of significantly improving how the complex flow
phenomena and wake effects are resolved, the inherently high
computational cost is currently seen as their main limitation. In
other words, CFD-based WFLO formulations sit at the other end of
the trade-off between accuracy and computational cost and, based
on the current state-of-the-art, are feasible only for final layout
design stages.

Here, we focus on developing a novel, fast optimization algo-
rithm for WFLO problem using a discrete-variable formulation
intended for quick screening of potential turbine layout candidates
during early design stages, and for generating nearly optimal initial
solutions for CFD-based WFLO formulations. The novelty of our
algorithm relies on the fact that we pose the binary QIP formulation
from Ref. [41] as an undirected graph known as a Markov random
field, where the global constraints and pairwise wake interactions
are encoded within the graph’s edges. We solve this new formu-
lation by applying a probabilistic inference method (maximum-a-
posteriori, MAP) on the resulting Markov random fields’ joint
likelihood function to determine the optimal turbine placements.
We hypothesize that, with our new approach, we can substantially
decrease the computational time/cost incurred to obtain optimal or
nearly optimal wind farm layouts. To generalize our results and to
focus only on the effectiveness and efficiency of our proposed al-
gorithm, we use the Jensen’s wake model and both idealized and
realistic wind turbine performance characteristics and wind roses,
consistently with established literature [50e52]. For a performance
comparison, we adopt standard benchmark from the WFLO litera-
ture [24,25], specifically selecting two cases representative of the
range of problem complexities typically encountered by practi-
tioners [41]. To further study the effectiveness, efficiency and
scalability of our formulation, we compare the turbine layouts
produced using the proposed method with an exact, computa-
tionally exhaustive branch and cut algorithm under varying wind
regime complexities, wind farm discretization resolutions, and
number of turbines.

2. Methods

The objective of the WFLO is to optimally site turbines to
maximize the energy generation of a proposed wind farm. The
annual energy production (AEP) of the farm is calculated according
to Eq. (1):

AEP¼
XP
p¼1

XQ
q¼1

tp;qPtotal;p;q; (1)

where P and Q are the number of wind speed and direction bins,
respectively, tp;q is the total time that the wind farm experiences
each wind speed-direction state, and Ptotal;p;q is the total power
produced by the turbines for a given wind speed and direction.
Note that in this work we concern ourselves only with the maxi-
mization of energy production; the reader is referred to
Refs. [14,19,53] for approaches that consider installation costs,
environmental impact, land-use and other optimization objectives
and constraints. In this study, we use two methods to estimate the
power generated by the turbines. In the first one (Eq. (2a)), we
consider the power generated by each turbine to be proportional to
the cube of the effective local wind speeds at the turbine hub
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height. We adopt this modelling choice to directly compare our
results to those published in previous works, which have over-
whelmingly calculated the turbine power output in a similar
fashion [50e52,54]. In the second method (Eq. (2b)), we use the
power as given by the wind turbine’s manufacturer. Hence,
depending on the application of our methodology, we can have the
following two equations for estimating the power generated:

Ptotal;p;q ¼
XK
k¼1

0:3u3k ; (2a)

Ptotal;p;q ¼
XK
k¼1

PkðukÞ; (2b)

where uk is the effective wind speed of the k-th turbine of a wind
farm with a total of K turbines.

In the next sections, we illustrate how the layout optimization
problem can be effectively posed as a Markov random field and
efficiently solved using probabilistic inference.
2.1. Wind farm layout optimization mathematical problem

Here we formulate the wind farm modelling and optimization
by discretizing the land being surveyed for turbine siting into
smaller areas. The wind farm area is divided into N cells, where
each cell can only hold a single turbine and is represented with a
binary variable xi, with i2I ¼ f1; …; Ng. Additionally, to avoid
structural damage to the turbines due to wake interactions, the
proximity between any two turbines is set to be at least more than
5 times their rotor radius. Because wake interactions are set to be
minimized, the proximity constraint is expected to be met by a
large amount most of the times.

To estimate the wake effect on a turbine at location j, j2 I,
generated by a turbine at location i upstream of j we use the Jen-
sen’s wake model [2]. This is a well-established and widely used
model that provides sufficiently accurate estimations of wake los-
ses over flat terrain [53]. It provides the effective wind speed as a
function of their relative position, thewake-decay constant ðaÞ, and
the upstream turbine thrust coefficient ðCT Þ. The effective wind
speed at a given location j due to multiple wakes (see Fig. 1) is
calculated in Eq. (3) by assuming that the kinetic energy deficit at j
Fig. 1. Wakes affecting turbine 3 (T3) produced by turbine 1 and 2 (T1, T2).

3

is the sum of all the kinetic energy deficits caused by the individual
wakes produced by turbines at locations i upstream of j :

�
1� uj

uo

�2

¼
XN

i¼1;isj

�
1� ui

uo

�2

xi; (3)

where 1� ui
uo

is the wake effect generated on a turbine at location j

by a turbine at location i upstream of j. Thus, the effective wind
speed uj of a downstream turbine j can then be calculated with Eq.
(4):

uj ¼ uo

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1;isj

�
1� ui

uo

�2
xi

vuut
3
5: (4)

As illustrated by Turner et al. [41], maximizing the wind farm
generated power is equivalent to maximizing the effective wind
speed at individual turbine locations. In fact, the power generated
by a turbine is, to a first approximation, proportional to the cube of
the wind speed. In Eq. (5), we then maximize the effective wind
speed by only placing turbines at optimal locations j that have an
overall smaller kinetic energy deficits and higher effective wind
speeds.

max
XN
j¼1

xjuo

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1;isj

�
1� ui

uo

�2
xi

vuut
3
5: (5)

Similarly, a quadratic integer program (QIP) is derived in
Ref. [41] by illustrating that maximizing effective wind speed is
approximately equivalent to minimizing the kinetic energy losses,
which is expressed with Eq. (6):

min
XN
j¼1

XN
i¼1;isj

xjuo

�
1� ui

uo

�2
xi: (6)

An interaction matrix W2RNxN can be generated by calculating,
prior to the optimization, the kinetic energy deficits at every
location j2I caused by the turbine at locations i2I; isj considering
the wind speed (bin p) and direction (bin q) probabilities. Each
element of this matrix is given by Eq. (7):

wij ¼

8>>><
>>>:

XP
p¼1

uo
XQ
q¼1

tp;q
T

�
1� ui

uo

�2
; isj

0 ; i ¼ j

; (7)

where tp;q=T represents the probability of occurrence of each
combination of wind speed and direction over the entire observa-
tion period, T . Note that this matrix fully characterizes the
complexity of the WFLO problem. Its sparsity pattern is influenced
by the wake parameters, the statistical and spatial distribution of
the wind resource, and the number of turbines to be placed in the
domain, while its size is determined by the discretization of the
wind farm domain. All these aspects are typically defined prior to
the layout optimization task. For instance, a target wind farm site
with a wind regime in which wind can come from any direction
with equal probability results in a full, symmetricW matrix, while a
site with a unidirectional wind regime results in a non-symmetric,
sparse matrix. Practical applications with real-world wind re-
sources will typically result in W matrices that lie between these
two extremes. Importantly, the elements of the W matrix, for any
given real-world wind resource, and in the context of wind farm
design practice, can be calculated with alternative wake models,
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such as Larsen’s [3], Frandsen et al.‘s [4], or even with CFD simu-
lations of the three-dimensional, turbulent flow in a complex
terrain [45,46,55]. TheW matrix, regardless of how its elements are
calculated, is the mathematical expression of the wake- and
terrain-induced turbine interactions, and it fully encapsulates the
mathematical behavior of the layout optimization problem when
the optimization objective is maximizing energy production.

In general terms, the QIP formulation can therefore be written
with Eq. (8):

minimize XTWX; (8a)

subject to
XN
j¼1

xj ¼ K or eTX ¼ K; (8b)

xj2f0;1g; (8c)

where X ¼ ðx1;…; xNÞ is a binary decision vector such that X2

f0;1gN . Due to budget constraints, land feasibility, government
regulations, and grid capacity, the number of turbines to be placed
on the wind farm is typically determined prior to the farm devel-
opment. Thus, a constraint is included in the problem formulation
(Eq. (8b)), which enforces that only a set number of turbines K will

be placed on the farm, where e is a vector f1;…;1gN. Depending on
the behavior of thewakemodel, the complexity of thewind regime,
and the problem state space (i.e., number of turbines and dis-
cretization resolution), the resulting QIP can bemulti-modal, highly
non-convex and non-tractable.

Note that the problem formulation does not require any as-
sumptions regarding the shape of the wind farm area or its sub-
division. In Fig. 1, we plotted a squared region divided into squared
cells to clearly illustrate the problem’s decision variables (the tur-
bine locations). However, the individual cells that compose the
wind farm area do not have to form a square or rectangle, they do
not have to be numbered in any particular way, they do not even
have to be contiguous or form a partition of a space. The shape,
dimension, and arrangement of the wind farm area and its cells are
chosen depending on the specific wind farm site. As such, problem
constraints that are site-specific (e.g., land-use, setbacks) or arise
from other disciplines (e.g., noise or environmental requirements)
could be incorporated either through appropriate discretization of
the wind farm area or as additional terms in the augmented
Lagrangian (Eq. (9)), to extend our formulation to multi-
disciplinary applications.
2.2. Wind farm layout optimization as a Markov random problem

Herewe pose the binary QIP (Eq. (8)) as an undirected graph G ¼
ðV ; EÞ known as a Markov random field V is a set of vertices

representative of a decision vector, X2f0;1gN (also known as
random variables), connected by edges, E, that encode the pairwise
wake interactions from W and the turbine number constraint. We
start by rewriting Eq. (8) as an augmented Lagrangian in Eq. (9). The
Lagrangian encodes the turbine number constraint from Eq. (8b)
into a quadratic penalty function with penalty factor b:

f ðX;bÞ ¼ XTWX þ b
�
eTX � K

�T�
eTX � K

�
; (9)

which can be further developed into Eq. (10):
4

f ðX; bÞ ¼ XTWX þ bXT

2
64
1
0
«

2 / 2
1 1 «
« 1 2

0 0/ 1

3
75X þ bð�2K þ 1ÞeTX þ K2:

(10)

If we omit the constant term K2 as it does not affect the opti-
mization, Eq. (11) shows the unconstrained binary QIP where the
parameter b controls the smoothness of the penalty contour:

argmin
X2f0;1gN ;b

XT ðW þ bEÞX þ ð�2Kbþ bÞeTX: (11)

The relationship between the variables from Eq. (11) can be
concisely captured using a probabilistic graphical model, G (known
as Markov random field), which is a graphical representation of the
joint probability distribution of the variables [56]. Probabilistic
inference known as maximum-a-posteriori can then be conducted
on the resulting Markov random fields’ joint likelihood function to
determine the optimal turbine placements.

The overall goal of the proposed formulation is to approximate
optimal turbine layouts much faster than solving the mathematical
model using exact solvers. The key idea behind our proposed
approach is that, even though the optimization problem is deter-
ministic, we can use a stochastic approach to solve it more effi-
ciently. Thus, the turbine locations (binary decision variables) are
considered as random, with a joint probability distribution be-
tween variables (i.e., between turbine locations) that inversely
depends on the magnitude of their physical, deterministic inter-
action as encoded in the W matrix. Once the layout optimization
problem is formulated as such, we can leverage an extensive
literature in efficient methods for maximization of joint probability
distributions to find the turbine positions that are most likely to
minimize their interactions and thus have maximum energy
production.

Markov random fields (i.e., the probabilistic model of the tur-
bine layout optimization problem) can be decomposed as a product
of factors composed of a set of random variables Xc over the set of
maximal cliques, C, of the graph, G ½56�. This decomposition is such
that the set of maximal cliques satisfies Xc4Xcc2C and ∪

c2C
Xc ¼

X ½56�. Intuitively, a clique is a subset of turbines where each of
them has a mutual interaction with all the others. Hence,
depending on the wake model and the wind regime, the in-
teractions between the random variables may be localized and
form maximal cliques. Given a set of binary random variables,

X2f0;1gN , the joint probability of a particular configuration of X to
occur can be written with Eq. (12):

pðXÞ ¼ 1
Z

Y
C

qCðXCÞ; (12)

where qCðXCÞ is called potential function and encodes the problem-
specific relationships between the random variables, which in this
case are the pairwise wake interactions and turbines number
constraint. Z is called partition function and is used to normalize
the joint distribution. It is expressed as:

Z ¼
X
X

Y
C

qCðXCÞ: (13)

The potential function, qCðXCÞ, is generally expressed as an
exponential function according to Eq. (14):
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qCðXCÞ ¼ expð�EðXcÞÞ; (14)

where EðXcÞ is called energy function (not to be confused with the
wind farm energy generation). The minus sign in Eq. (14) indicates
that a random variable assignment with a higher probability has a
lower overall energy. The product of the exponential functions can
be decomposed in the sum of two sets of energy functions as given
in Eq. (15):

EðX;fÞ ¼
X
s2V

fsðXsÞ þ
X

ðs;tÞ2E

fstðXs;XtÞ; (15)

where fsðXsÞ represents all unary potentials over the model
vertices, V (encoding the decision vector), and fstðXs;XtÞ represents
the pairwise potentials over the edges, E (encoding the pairwise
wake interactions and the turbine number constraint). If we recall
Eq. (11), we see that the terms ðW þb1EÞ and ð�2KbþbÞ can be
embedded in the coefficients of the quadratic pairwise and linear
unary potentials of Eq. (15), respectively. The energy function, EðX;
fÞ, can then be interpreted as the original objective function (Eq.
(9)) to be minimized.

The joint distribution can then be rewritten by incorporating Eq.
(15) into Eq. (12):

pðX;fÞ ¼ 1
Z
exp

0
@�

X
s2V

fsðXsÞ �
X

ðs;tÞ2E

fstðXs;XtÞ
1
A: (16)

Determining the configuration of random variables XM in a
graphical model that yields the maximum joint probability (and,
consequently, the minimum of the energy function, EðX; fÞ) is
known as maximum-a-posteriori inference problem and is
formulated as:

XM ¼ argmax
X

pðX;fÞ; (17)

this is equivalent tominimizing the energy function as expressed in
Eq. (18):

XM ¼ argmin
X2 f0;1gN

EðX;fÞ ¼ argmin
X2 f0;1gN

0
@X

s2V

fsðXsÞ þ
X

ðs;tÞ2E

fstðXs;XtÞ
1
A:

(18)

Now that the original optimization problem of Eq. (8), refor-
mulated as Eq. (11), has now been cast as a maximum-a-posteriori
problem, Eq. (18). Minimizing Eq. (18) is an NP-hard problem, and
researchers have focused on approximate minimization algorithms
that solve the following, equivalent linear programming (LP)
relaxation. By introducing auxiliary marginal variables over the
randomvariables associatedwith the vertices fmsðXsÞgs2V such thatP
Xs

msðXsÞ ¼ 1 and for every edge fmstðXs;XtÞgðs;tÞ2E within the

graphical model such that
P
Xs ;Xt

mstðXs; XtÞ ¼ 1 ½57�, the linear pro-

gram can be defined with Eqs. (19) and (20):
argmin
m2MðGÞ

fTm ¼ argmin
m2MðGÞ

0
@X

s2V

X
Xs

msðXsÞfsðXsÞ þ
X

ðs;tÞ2E

X
Xs;Xt

mstðXs;XtÞfst

5

MðGÞ ¼

8>><
>>:m2Rd

��������
dpðX;fÞ subject to

msðXsÞ ¼
X
XV\s

pðX;fÞ

mstðXs;XtÞ ¼
X
XV\s;t

pðX;fÞ

9>>=
>>;;

(20)

where MðGÞ is called binary marginal polytope. Eqs. (19) and (20)
are equivalent to the original problem formulation of Eq. (8) after
maximum-a-posteriori probabilistic inference is conducted on the
graphical model that encodes decision variables, wake interactions,
and turbine number constraint. Below, we discuss a solution
strategy for the optimization problem posed in Eqs. (19) and (20).
2.3. Message-passing algorithm

We hypothesize that approximate solutions can be generated
quickly for large Markov random fields by a class of algorithms
known as message-passing algorithms that works by exploiting the
decomposable factors within the graphical model. Message-
passing algorithms approximate maximum-a-posteriori assign-
ments by iteratively passing beliefs locally along the edges of the
graphical model in a distributed, decentralized, and asynchronous
manner. Intuitively, we can understand this process as follows.
Given a candidate turbine layout, i.e., a vector of decision variables
that have large joint probability (i.e., a low energy function, thus
low turbine interactions), a message passing algorithm would, in
any given iteration, modify local groups of decision variables to
increase their joint probability (reduce their interaction) regardless
of its other neighboring vertices in the graph, and repeat this
process asynchronously until convergence.

A widely used message-passing algorithm is the max-product
belief propagation (BP) [58], which was shown to produce good
empirical results with problem structures similar to Eq. (16), as
shown in the fields of computer vision (e.g. Refs. [59,60]) and
computational biology (e.g. Ref. [61]). Because multi-directional
wind regimes create cycles within the Markov random field, an
algorithm that efficiently computes maximum-a-posteriori
configuration for Markov random fields with cycles is tree-
reweighted (TRW) message passing [57]. TRW message passing
works by decomposing an arbitrary graphical model with cycles
into a convex combination of tree-structured distributions to
calculate the optimal upper bound while maximizing the lower
bound of the energy objective. In this work, we use the sequential
tree-reweighted (TRW-S) message passing algorithm developed by
Kolmogorov [62] that guarantees that the lower bound will never
decrease and, as such, improves its convergence properties. We
apply TRW-S to minimize the objective function in Eqs. (19) and
(20) over the binary marginal polytope to determine the optimal
turbine layout configurations. In the Appendix, we provide a
description of the TRW-S algorithm as developed by Kolmogorov in
Refs. [62,63].

TRW-S relies on the assumption that the resulting linear pro-
gram is tight when the integer constraints are relaxed by forming a
local polytope LðGÞ, where MðGÞ4LðGÞ and min

m2LðGÞ
fTm � min

m2MðGÞ
fTm.
ðXs;XtÞ
1
A; (19)



A. Dhoot, E.G.A. Antonini, D.A. Romero et al. Energy 223 (2021) 120035
The relaxed constraints are hardly tight, which requires us to
investigate methodologies that can be used to dynamically
generate constraints within the message passing paradigm to make
the solution space results tight. Sontag et al. [64,65] demonstrated
that tighter relaxations can be acquired by iteratively enforcing
edge consistency over a small subset of triplet clusters c4 C to
generate the polytope P. Clusters are chosen at every iteration that
improve the dual LP bound to create a sequence of polytopes P04
P14P2…4MðGÞ in which the relaxations are continually tighter
and approach the marginal polytope [66]. Thus, by iteratively
approximating the MIP solution using TRW-S and generating
tighter polytopes, we expect that good turbine placements can be
acquired in a relatively shorter amount of time compared to other
exact solver techniques.

We hypothesize that by applying message passing algorithms to
the relaxedWFLOMIPmodel, while enforcing key constraints using
cluster-based approach, optimal or nearly optimal turbine layouts
can be generated faster than with traditional exact approaches. In
this paper, we conduct a thorough computational study to measure
the effectiveness of TRW-S in comparison with branch and cut al-
gorithm to generate turbine layouts under varying wind regime
complexities and problem dimensionalities. The specific test cases
chosen here reflect typical problem complexities found in wind
farm engineering practice, from small wind farms with unidirec-
tional wind regimes to large wind farms under wind regimes with
multiple wind speeds and directions, usually showing a dominant
wind direction range. Please note that in the following sections, for
compactness of our notation, we refer to the proposed TRW-S
approximation of the undirected graph/Markov field representa-
tion of the underlying QIP simply as the message passing (MP)
algorithm.

Note that other inference algorithms exist and could be used to
find low-energy solutions. For example, gradient descent is
considered one of the simplest optimization techniques, which
minimizes the energy by changing independent subsets of vari-
ables to find lower-energy configurations [67]. Gradient descent
however tends to get stuck in local minima, and stochastic gradient
descent are typically implemented to overcome this limitation.
Another method that was widely used for MRF inference problems
is simulated annealing [68]. However, these methods have been
superseded by the newer graph cuts and loopy belief propagation
techniques that have proven to be more powerful [69]. Because
TRW-S was shown to give consistently strong results [70], it has
been chosen as the preferred method also in this study.

2.4. Optimization workflow

The workflow of the developed optimization framework is
illustrated in Fig. 2 and can be conceptualized as follows. A set of
boundary conditions are given during the early design stages of a
wind farm project: these include (i) the wind resource of the site,
expressed with a wind rose, (ii) the turbine characteristics and
performance curves, (iii) site details such as land area, land avail-
ability, and environmentally-related setbacks, and (iv) the number
of turbines to be placed. A wake model is then used to generate a
wake interaction matrix (Eq. (7)) by estimating wake effects on the
discretized wind farm terrain with the given set of boundary con-
ditions. For example, analytical wake models that have been
extensively validated with wind tunnel and field data [71], for use
on complex terrains [72], or even CFD simulations [8,10] could be
used for this purpose. In our study, and despite its limitations, we
used the Jensen’s wake model with the intent of comparing the
results of our formulationwith standard benchmark problems from
the WFLO literature, which has overwhelmingly relied on Jensen’s
model. We reiterate, however, that any impact of the choice of wake
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model is reflected in the W matrix, which fully encapsulates all
wake interactions and is considered an input to the proposed
optimization methodology. Our developed algorithm solves such a
definedWFLO problem by optimally siting the turbines in the given
available land and by fulfilling the site constraints. Other state-of-
the-art optimization algorithms could be used to find optimal
layouts, but we will show that our message passing algorithm can
generate optimal or nearly optimal layouts at a substantially lower
computational cost.
2.5. Numerical experiments

To study the effectiveness, efficiency and scalability of our
formulation, we apply it to several numerical experiments that
represent both idealized and realistic wind farm scenarios. We
define two benchmark wind resources, WR-1 and WR-36, illus-
trated in Fig. 3: wind regime WR-1 has a single wind speed and
direction state, and WR-36 is a more complex wind regime with 3
wind speeds and 36 directions with varying probabilities. These
two wind resource distributions, which result in radically different
wake interaction matrices (W), allow us to assess the performance
of the proposed algorithm in extreme cases, and have been
extensively used in the literature to benchmark algorithm perfor-
mance [24,25,41]. In real-world applications, the wind rose for the
site would be known, and would be used as an input to the opti-
mization methodology to calculate the corresponding wake inter-
action matrix.

Wake modelling, wind farm, and simulation parameters are
listed in Table 1. When we compare results obtained by our pro-
posed algorithm to those of Ref. [24,25,41], we choose their same
turbine characteristics, wind farm dimensions, and modelling as-
sumptions to establish a fair comparison. For the more realistic
application, we select instead the NREL 5-MW reference wind
turbine [73], and we consider a square wind farm area of 49 km2

with varying discrete resolutions (100, 400, and 2500 square cells).
To fully characterize the performance of our algorithm, for each
wind rose and discrete resolution, we run a set of cases where we
vary the turbine number, K .

For the realistic, modern-sized wind farm cases with NREL 5-
MW turbines, we compare results obtained by our proposed algo-
rithm with those obtained by the exact state-of-the-art solver
CPLEX 12.1 (IBM Corp., Armonk, NY) using a branch and cut algo-
rithm. Initially, the branch and cut algorithm is run using 1 thread
with a cut-off of 1 h (E1); however, if relative optimality is not
guaranteed as indicated by its relative gap, further branch and cut
iterations are conducted based on 4 threads with a cut-off of 1 h
(E2) and 12 threads with a cut-off of 24 h (E3). The relative gap
serves as a measure of progress toward finding and proving opti-
mality and can be defined as the difference between a best-known
solution and a value that bounds the best possible solution. MP
simulations are run using source-code in Ref. [74] by applying a
total of 5000 triplet clusters on a single thread with a cut-off of 1 h.
Triplet clusters used to tighten the relaxed marginal polytope (Eq.
(20)) are generated using modified source-code in Ref. [75] devel-
oped from Ref. [66].
3. Results and discussion

In this section, we show the results of our proposed optimiza-
tion algorithmwhen applied to the cases described in the previous
section, which are useful to understand the effectiveness of our
approach. We also compare its results in term of computational
time and solution quality to other widely studied algorithms.



Fig. 2. Workflow of the developed optimization framework. Our contribution is the development of an efficient and effective optimization approach (in blue) to solve the layout
optimization problem and determine an optimal wind farm layout. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 3. Wind roses of unidirectional (a) and multidirectional complex wind regime (b).
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3.1. Comparison with literature results

In this section, we compare power capacity results from MP
with well-established algorithms reported in the WFLO literature,
specifically EAs in Refs. [24,25] and mathematical programming in
Ref. [41]. In these cases, the wind farm area is of 4 km2 and divided
into 100 cells of 200 m � 200 m. Results in term of power pro-
duction are reported in Tables 2 and 3. MP outperforms Mosetti
et al. [24] for placing 26 and 15 turbines under WR-1 and WR-36,
respectively; contrarily, MP performs worse than Grady et al. [25]
for placing 30 and 39 turbines under WR-1 and WR-36,
7

respectively. Since Mosetti et al. and Grady et al.‘s methods are
similar, it follows that Grady et al. outperforms the proposed MP
thanks to the use of fine-tuned algorithm parameters and a longer
run time. Also, results from branch and cut either outperform or
match Turner et al.‘s results [41] even though both methods have
similar mathematical formulation.

Figs. 4 and 5 show the various layouts for the results presented
in Tables 2 and 3 The algorithms try to find the arrangement that
maximizes the power production and, consequently, minimizes the
wake losses by moving the turbines further apart. The layouts are a
result of different concurring factors, such as the wind speed and



Table 1
Parameters used in the layout optimization problem.

Parameters Values for comparison with results from Ref. [24,25,41] Values for realistic applications

Farm size 4 km2 (2 km � 2 km) 49 km2 (7 km � 7 km)
Turbine rotor radius ðRÞ 20 m 63 m
Turbine hub height ðHÞ 60 m 90 m
Turbine thrust coefficient ðCT Þ 0.88 From Ref. [73]
Turbine power ðPÞ From Eq. 2a From Ref. [73]
Turbine rated power n.a. 5 MW
Wake model Jensen’s [2]
Axial induction factor ðaÞ From CT
Wake-decay constant ðaÞ 0.1
Exact solver CPLEX 12.1 (IBM Corp)
Workstation Intel Xeon Processor - 16 cores @ 2.10 GHz - 256 GB RAM

Table 2
Results comparison under WR-1 with 100 cells.

K Model Power (kW)

26 Mosetti et al. [24] 12,474
Turner et al. [41] 12,686
CPLEX (E1) 12,709
MP 12,486

30 Grady et al. [25] 14,410
Turner et al. [41] 14,410
CPLEX (E1) 14,410
MP 13,972

Table 3
Results comparison under WR-36 with 100 cells.

K Model Power (kW)

15 Mosetti et al. [24] 13,374
Turner et al. [41] 13,671
CPLEX (E3) 13,679
MP 13,395

39 Grady et al. [25] 32,377
Turner et al. [41] 31,947
CPLEX (E3) 32,818
MP 32,142
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direction distributions, the turbine number and performance, and
the interspacing constraints. In general, we observe that layouts
generated using mathematical programming in Turner et al. and
CPLEX yield layouts with recognizable spatial structures, while the
layouts obtained with EAs in Refs. [24,25] and MP exhibit less
Fig. 4. Comparison of layouts for WR-1 sce
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structure but similar energy production values. The results are
evidence of the flatness of the objective function landscape near the
optimum, since noticeably different layouts result in small differ-
ences in power generation values. Importantly, this provides wind
farm designers with layout flexibility: multiple layouts may meet
energy generation targets, but with markedly different conse-
quences in terms of infrastructure, cost, environmental impact, and
other concerns not addressed in this optimization formulation.
3.2. Comparison with state-of-the-art solver at 100-cell resolution

Here, we seek to optimize the layout of awind farm consisting of
NREL 5-MW turbines. The wind farm area is of 49 km2 and divided
into 100 cells of 700 m � 700 m, which automatically satisfies the
turbine proximity constraint. We obtained optimal layouts for
varying turbine numbers using branch and cut algorithm and MP
methods. Percentage difference inwind farm layout power capacity
and ratio of computational times for varying number of turbines for
WR-1 and WR-36 are shown in Fig. 6. A positive percentage dif-
ference in Fig. 6-a means that MP generated a layout with a higher
power capacity. Likewise, a positive time ratio in Fig. 6-b means
that MP required a lower computational time than CPLEX. All tur-
bine placements for WR-1 reach optimality using E1 in a few sec-
onds due to the low sparsity of the interaction matrix and the
relatively small state space. Under WR-36, the highly dense inter-
action matrix causes turbine placements to have a larger gap when
applying E1, thus, needing application of E2 and E3 to generate
better bounds and cuts, requiring up to several days in CPU time to
compute optimal solutions. However, a large gap still occurs while
placing 20e40 turbines due to the relatively large complexity of the
nario with (a) 26 and (b) 30 turbines.



Fig. 5. Comparison of layouts for WR-36 scenario with (a) 15 and (b) 39 turbines.

Fig. 6. Percent difference in power capacity (a) and ratio of computational time (b) between MP (our algorithm) and CPLEX for varying turbines under WR-1 andWR-36 with a 100-
cell wind farm area. Values above 0% and above 100 indicate that MP produces a layout with, respectively, higher power capacity and lower computational cost.
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turbine constraint polytope as characterized by the difficulty to
generate effective cuts and better bounds that well approximate
the integer polytope.

As shown in Fig. 6-a, many layouts generated usingMP capture a
lower power capacity compared to E1, E2 and E3 for WR-1 andWR-
36, respectively. Under WR-1, MP generates layouts with a power
capacity almost equivalent to E1, whereas under WR-36, the min-
imum percentage difference occurs between E1 and MP, while the
maximum occurs between E3 and MP because E3 has a higher cut-
off and usesmore computing resources to generate similar or better
layouts. Power capacity values generated using MP are 0%e3%
lower compared to E1, E2 and E3 for placement of any number of
turbines, while varying less than 0.5% between E1, E2 and E3 for any
given number of turbines.

MP generates layouts that are consistently within 3% of the
power capacity generated using state-of-the-art branch and cut
algorithm for a wide variety of cases with varying gaps and cut-off
periods. We attribute near optimality to the lack of effective triplet
clusters, choice of penalty constant, and local numerical instability
caused by locally similar wake decay values. In latter sections, we
test again these inefficiencies of MP when generation of cuts and
bounds is further challenged when the problem’s state space is
9

increased by increasing discrete resolution. In terms of computa-
tional time, MP is not capable of efficiently solving the problem
given by the domain discretized in 100 cells and under WR-1.
However, results in the next section show that, as the wind
resource becomes more complex, MP generates nearly optimal
layouts in a computational time comparable to E1 or several times
faster than E2 and E3.
3.3. Comparison with state-of-the-art solver at 400-cell resolution

Resolution is increased by four-fold from 100 cells to 400 cells
while keeping the wind farm area to a constant 49 km2 and
decreasing the square cell size to 350m� 350m. Turbine proximity
constraint is met without an addition of further constraints due to
the adequate distance between centroids of the neighboring cells.
Higher resolutions further increase the computational complexity
of the problem due to an exponential increase in the state space of
the integer program.

We generated optimal layouts for varying turbine numbers us-
ing branch and cut algorithm and MP methods for WR-1 and WR-
36. As running branch and cut under E3 requires significant
computational and memory resources, in some cases, insufficient
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memory due to large problem size causes the program to terminate
without generating a layout. Generation of triplet clusters for
400 cells is a computationally expensive task and can take up to
3e4 h. The graphical model structure based on the marginal pol-
ytope generated using the unconstrained objective function (Eq.
(19)) hardly changes while optimizing for varying number of tur-
bines using MP; thus, we pre-calculate 5000 triplet clusters based
on 10 turbines to save time on layout generation for additional
turbines. All results presented usingMP are therefore based on pre-
generated clusters for individual wind regimes.

Fig. 7 shows the percentage difference in power capacity and
ratio of computational times obtained from the three instances of
branch and cut and MP for varying number of turbines under both
wind regimes. UnderWR-1, MP consistently captures layouts with a
0%e4% lower power capacity than E1, E2 and E3 and with under 1%
variation between the three instances. Furthermore, the largest
difference occurs in formulations with 30e180 turbines due to their
difficult turbine constraint polytope. UnderWR-36, placing 60e280
turbines usingMP produces a higher power capacity than E1 and E2.
Applying E3 yields tighter bounds and cuts, hence, reducing the gap
within this turbine range, which results in E3’s power capacity re-
sults that are better than MP. The efficiency of MP in solving the
layout problem becomes clear with these cases: MP is 45%e70%
faster than E1, between 5 and 10 times faster than E2, and roughly 3
orders of magnitude faster than E3.
3.4. Comparison with state-of-the-art solver at 2500-cell resolution

Integer optimization of the WFLO problem using any method
becomes a magnitude more challenging when the resolution in
increased twenty-five-fold to 2500 cells, while still maintaining the
wind farm area to a constant 49 km2 and decreasing the square cell
size to 140 m � 140 m. At this resolution, placing turbines in
adjacent and nearby cells violate turbine proximity constraint. An
inequality constraint then is introduced such that if the distance
between the two cells is less than 5 times the rotor radius then
there can only be a placement of 1 turbine between the two cells.
The proximity constraint and 140 m distance between adjacent
cells limits the layout feasibility to no more than 280 turbines.
Generation of effective bounds, cuts, and triplet clusters is chal-
lenging under this case due to the demanding memory
Fig. 7. Percent difference in power capacity (a) and ratio of computational time (b) between
cell wind farm area. Values above 0% and above 100 indicate that MP produces a layout with
for CPLEX under E3 indicate lack of converged results within the allotted computational re
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requirement and computational complexity. Due to the large state-
space we notice that we run out of memory while iterating to
tighten the relaxed marginal polytope. Therefore, to preserve
computational feasibility we decrease the cut-off time of E3 to 4 h,
remove the generation of triplet clusters, and employ a simple
rounding scheme to construct a feasible integral solution for MP.

In Fig. 8 we plot the percentage difference in power capacity and
ratio of computational time obtained from the three instances of
branch and cut and MP for varying number of turbines under both
wind regimes. Results indicate that there is large gap for many
placements after applying E1, E2 and E3 for both wind regimes, and
E3 generally produces layouts with better power capacity. Even
though the lack of triplet cluster generation for MP is expected to
produce layouts with uncertain power capacity, we observe that in
certain cases power produced by MP is better than E1, E2 and E3. It
is conjectured that this occurs due to the difficulty in constructing
effective bounds and cuts using CPLEX given the limited amount of
resources available and the large problem size. Under WR-1, E1, E2
and E3 produce layouts with up to 5% higher power capacity than
MP for up to 100 turbine placements. For higher numbers of tur-
bines, on the other hand, MP produces layouts with up to 9% higher
power capacity than branch and cut instances. This occurs as
branch and cut is able to generate better bounds and cuts for the
turbine constraint polytope with a smaller state space due to a
lower demand on computational complexity. Under WR-36, both
algorithms produce layouts with similar power capacity for place-
ment of over 50 turbines. Nevertheless, MP performance is
approximately better than branch and cut for less than 50 turbines.
In terms of computational time, MP generates those solutions to the
layout problem several orders of magnitude faster than branch and
cut algorithm.
3.5. Scalability of message-passing algorithm

In the earlier analysis, we have observed that computational
complexity of the integer program increases as the wind farm
resolution is increased. While choosing a lower resolution may
offer computational feasibility, the resulting turbine configurations
may be sub-optimal due to stricter limitations on the placement of
the turbines, compared to continuous formulations or discrete
formulations with a higher resolution. Therefore, selecting a
MP (our algorithm) and CPLEX for varying turbines under WR-1 andWR-36 with a 400-
, respectively, higher power capacity and lower computational cost. Missing data points
sources.



Fig. 8. Percent difference in power capacity (a) and ratio of computational time (b) between MP (our algorithm) and CPLEX for varying turbines under WR-1 and WR-36 with a
2500-cell wind farm area. Values above 0% and above 100 indicate that MP produces a layout with, respectively, higher power capacity and lower computational cost. Missing data
points for CPLEX under E3 indicate lack of converged results within the allotted computational resources.

Fig. 9. Power capacity generated using MP (our algorithm) and CPLEX for 100, 400, and 2500 square cells under WR-1 (a) and WR-36 (b) wind regimes. CPLEX solutions are taken
with E3 settings, except for 100 cells with WR-1, where only E1 is available. Missing data points for CPLEX under E3 indicate lack of converged results within the allotted
computational resources.
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problem resolution a priori while maintaining a handle on tracta-
bility poses a challenge for WFLO practitioners.

To illustrate this point, Fig. 9 shows the power capacity for
various number of turbines for three cases (100, 400, and
2500 cells) produced using branch and cut and MP algorithms
under WR-1 (left) and WR-36 (right) wind regimes. Under the WR-
1 wind regime, both algorithms result in a higher power generation
when higher resolutions are used to discretize the wind farm
domain. In contrast, problem resolution seems to have no effect on
the best achievable power generation values for a given number of
turbines under the WR-36 wind regime. If we remember that
problem resolution has a direct effect on computational complexity
and cost, the complete set of results presented in this work are clear
evidence of the complex interaction between the statistical distri-
bution of the wind resource, the problem representation and so-
lution space (discretization resolution), the desired number of
turbines, and the computational cost and time required to find a
nearly-optimal or optimal solution.

Scalability of branch and cut and MP poses a challenge due to
11
the difficulty in generating effective cuts and triplets. Nevertheless,
for many turbine placements MP’s performance is equivalent or
better than E1, E2 and E3, particularly at higher resolutions with 400
and 2500 cells under both studied wind regimes. Interestingly, for
these resolutions, both methods produce layouts that are nearly
optimal, as evidenced by the large relative gaps between the MIP
bounds and the best obtained solution. Hence, in the context of the
problem cases studied here, which reflect the complexity of typical
WFLO problems found in practice, MP provides a more competitive
and scalable approach to generating optimal or nearly optimal
layouts in comparison with exhaustive branch and cut while
requiring fewer computational resources. Furthermore, nearly
optimal layouts generated using MP can be augmented by feeding
the layouts to greedy problem-specific heuristics or gradient-based
methods to converge to the nearest optimum of the objective
landscape. Therefore, MP provides an interesting alternative
perspective to generating fast and approximate layouts to the
challenging WFLO problem, one more step towards interactive,
computer-aided wind farm layout optimization.



A. Dhoot, E.G.A. Antonini, D.A. Romero et al. Energy 223 (2021) 120035
4. Conclusions

In this paper, we developed a novel, fast optimization algorithm
forWFLO problem intended for quick screening of potential turbine
layout candidates during early wind farm design stages, or for
generating nearly optimal initial solutions for CFD-based WFLO
formulations. To facilitate the computational tractability of the
problem, generalize the optimization results, and focus on the
effectiveness, efficiency and scalability of our algorithm, we dis-
cretized the wind farm domain, used the Jensen’s wake model, and
assumed both idealized and realistic wind turbine performance
characteristics and wind roses. We modeled the binary QIP
formulation of theWFLO problem as an undirected graphical model
by incorporating pairwise wake interactions and turbine number
constraints within the graph’s edges. Generally, the original QIP
formulation requires an exhaustive and computationally expensive
branch and cut algorithm to determine optimal layouts. This solver,
in many cases, produces sub-optimal layouts with a large relative
gap for high discretization resolutions and challenging turbine
budget constraints. However, we demonstrated that by using our
proposed message passing algorithm on the new undirected
graphical model of the WFLO, we can decode good, nearly optimal
layouts for a given number of turbines in a substantially lower
computational time. To assess the effectiveness, efficiency and
scalability of our optimization algorithm, and consistently with
established literature, we have conducted a thorough computa-
tional study and we have compared it with branch and cut algo-
rithm in generating turbine layouts under varying wind regime
complexity and problem resolution relying on commonly used
benchmark problems.

The branch and cut algorithm was effective at finding optimal
layouts for a low-resolution problem (100 cells) under the two
wind regimes tested in this work, while in comparison, MP pro-
duced nearly optimal layouts that are consistently within 3% of the
power capacity achieved by branch and cut. For test cases with
higher resolutions, both methods have difficulty generating cuts to
tighten the relaxed polytope and the generated layouts are sub-
optimal and rely on locally optimal rounding schemes. At these
higher resolutions with 400 and 2500 cells, MP can outperform
branch and cut methods by up to 9%. Additionally, we show thatMP
can produce better approximate layouts in a shorter period of time.
With the exception of the simplest test case tested with 100 cells
and unidirectional wind rose (WR-1), MP generated layouts
significantly faster, accelerating the optimization process by at least
50%, and it was in many cases several orders of magnitude faster
that branch and cut. Moreover, for test cases with higher resolu-
tions and a larger number of turbines, i.e., cases with large number
of decision variables, tighter constraints and challenging compu-
tational tractability, branch and cut was unable to reach a solution.
MP, on the other hand, was able to provide solutions at a lower
computational cost.

Overall, MP offers a competitive and scalable alternative to
computationally expensive branch and cut algorithms, especially
when design engineers are seeking to generate approximate and
nearly optimal layouts quickly. For simple wind regimes and low
resolutions, branch and cut algorithms still offer a very efficient
approach, providing optimal solutions quickly. However, as the
wind regimes become more complex or a higher problem resolu-
tion is required to better search the solution space, the proposed
MP has a substantial advantage in computational time while
providing solutions that are comparable or better than state-of-
the-art formulations and, in the most complex cases, providing
the only solutions that we could find. The proposed MP can be
efficiently used for quick screening of potential turbine layout
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candidates during early design stages or for generating nearly
optimal initial solutions for CFD-based WFLO formulations.

We foresee that a population of approximate layouts generated
from MP can be further optimized for other application-relevant
objectives (e.g. land-use, noise generation, infrastructure costs)
using fine-tuned stochastic methods, evolutionary search methods,
or even gradient-based methods. Additionally, our optimization
algorithm, which minimizes kinetic energy losses as a proxy for
maximizing energy production, can easily accommodate more
advanced wake models and more realistic details of a wind farm
project, such as wind rose and turbine performance characteristics.
To this end, suitable modifications would be needed for the
calculation of wake interactions and annual energy production, but
the proposed approach would still be valid, since the optimization
formulation relies on a wake interaction matrix calculated a priori
and the annual energy production calculated a posteriori.

The use of message passage algorithms to solve the probabilistic
inference problem could also enable a more robust wind farm
layout optimization with a more comprehensive uncertainty
quantification. In fact, recent studies [76,77] have shown how to
compute a measure of uncertainty associated with the graph cut
solutions. They showed how the min-marginal energies associated
with the label assignments of a random field can be computed
using newly developed algorithms based on dynamic graph cuts.
With these methods, it is then possible to give confidence bounds
on the farm annual energy production and a probability that each
determined turbine location is indeed optimal under the wake
interaction matrix. This confidence levels on the energy production
can be complemented by quantifying uncertainty of both input
parameters [78e80] and wake models [81,82], which are likely to
have a more significant impact in the resulting optimal layout. A
comprehensive robust optimization approach that considers and
quantifies all these uncertainties, although beyond of the scope of
the present study, would be a worthy goal for future work in this
area.
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Appendix. Sequential tree-reweighted (TRW-S) message
passing algorithm

In this work, we use the sequential tree-reweighted (TRW-S)
message passing algorithm developed by Kolmogorov [62,63,69] to
solve the layout optimization problem posed as a Markov random
field. We apply TRW-S to minimize the objective function in Eqs.
(19) and (20) over the binary marginal polytope to determine the
optimal turbine layout configurations. In Fig. 10, we present a
flowchart of the TRW-S message passing algorithm by illustrating
its fundamental steps for finding the optimal solution to the
problem.
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Fig. 10. Flowchart illustrating the sequential tree-reweighted (TRW-S) message pass-
ing algorithm as developed by Kolmogorov [62,63,69].

In the next lines, we present the mathematical details of the
algorithm. The first step of the TRW-S algorithm consists in
decomposing the graphical model into tree-structured functions.
The TRW-S algorithm will then try to find a decomposition that
maximizes the lower bound of the graphical model (Eqs. (19) and
(20)).

In Sec. 2.2, we showed that the initial wind farm layout opti-
mization problem can be cast as a maximum-a-posteriori problem
(Eq. (18)), which entails the minimization of the energy function:

EðX;fÞ ¼
X
s2V

fsðXsÞ þ
X

ðs;tÞ2E

fstðXs;XtÞ; (21)

where fsðXsÞ represents all unary potentials over the model
vertices, V (encoding the decision vector), and fstðXs;XtÞ represents
the pairwise potentials over the edges, E (encoding the pairwise
wake interactions and the turbine number constraint). The mini-
mization problem as given by Eq. (18) can be approximated to the
equivalent linear programming (LP) relaxation, Eqs. (19) and (20),
which TRW-S aims to solve.

We first define the reparameterization: if two parameter vectors
(two sets of unary and pairwise potentials) f and f define the same
energy function, then f is called a reparameterization of f. We then
decompose the graphical model into a convex combination of tree.
We consider the unary and pairwise potentials, f ¼
ffT 2Rd

���T2T g, as a collection of vectors indexed by a finite set

T (set of tree-structured functions) and r be a probability distri-
bution on T (so that rT � 0 for all T and

P
T2T

rT ¼ 1). The proba-

bility distribution is an arbitrary variable that does not affect the
optimization results. It is now possible to define a reparameteri-
zation of the potentials as follows:

f≡
X
T2T

rTfT : (22)
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The TRW-S algorithm starts with the original parameter vector,
f, and applies iteratively certain reparameterization operations to
f. The goal of these operations is to maximize a lower bound on the
energy function, i.e., FðfÞ ¼ argmin

X2 f0;1gN
EðX;fÞ (Eq. (18)). Kolmogorov

showed that the combined lower bounds of the reparametrized
tree-structured functions are equivalent to the lower bound of the
energy of the original vector, f:

X
T2T

rTF
�
fT
�
� F

 X
T2T

rTfT

!
¼ FðfÞ: (23)

The bound described above requires the computation of FðfT Þ
where the vector fT corresponds to a tree-structured graph, T ¼
ðVT ; ET Þ. To calculate this bound, the TRW-S algorithm uses max-
product belief propagation (BP). The basic operation of BP is pass-
ing a message from node s to node t for a directed edge ðs/tÞ2ET .
The messages are computed according to:

mstðjÞ ¼ argmin
i2Xs

ffsðiÞ þ fstði; jÞg cj2Xt : (24)

The BP algorithm keeps updating the unary and pairwise po-
tentials with the messages according to:

fsðjÞ :¼ fsðjÞ þmstðjÞ
fstðjÞ :¼ fstði; jÞ �mstðjÞ cj2Xt ; (25)

until convergence, which occurs when all edges have valid
messages. A valid message indicates that the values mstðjÞ
computed in Eq. (24) satisfymstðjÞ ¼ constst, where constst does not
depend on j. The main property of these messages is that they also
define a reparameterization.

The TRW-S algorithm works then as follows. First, a repar-
ameterization is conducted on the unary and pairwise potentials of
each tree-structured function as the result of the BP algorithm (Eq.
(25)). This operation finds the minimum energy configuration and
minimum energy for each tree. Second, an averaging operation is
used to combine the results of each tree according to Eq. (22). The
algorithm stops if the value of the lower bound, FðfÞ (Eq. (23)), has
not increased within some precision. If a fixed, yet arbitrary, order
for the nodes is selected, the TRW-S algorithm guarantees that the
lower bound never decreases.
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